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Synergistic impacts of global warming
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Recent epizootics have removed important functional species from Carib-

bean coral reefs and left communities vulnerable to alternative attractors.

Global warming will impact reefs further through two mechanisms. A

chronic mechanism reduces coral calcification, which can result in depressed

somatic growth. An acute mechanism, coral bleaching, causes extreme mor-

tality when sea temperatures become anomalously high. We ask how these

two mechanisms interact in driving future reef state (coral cover) and resili-

ence (the probability of a reef remaining within a coral attractor). We find

that acute mechanisms have the greatest impact overall, but the nature of

the interaction with chronic stress depends on the metric considered.

Chronic and acute stress act additively on reef state but form a strong

synergy when influencing resilience by intensifying a regime shift. Chronic

stress increases the size of the algal basin of attraction (at the expense of the

coral basin), whereas coral bleaching pushes the system closer to the algal

attractor. Resilience can change faster—and earlier—than a change in reef

state. Therefore, we caution against basing management solely on measures

of reef state because a loss of resilience can go unnoticed for many years and

then become disproportionately more difficult to restore.
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1. Introduction
In the past three decades, many Caribbean coral reef ecosystems have under-

gone a profound phase (regime) shift in community composition from coral

to macroalgal dominance [1–3]. It has been hypothesized that this shift in com-

munity state was accompanied by a novel susceptibility to alternative attractors

(i.e. stable equilibria), such that reef (community) state can follow either a coral-

dominated basin of attraction or an algal-dominated attractor [4,5]. This

hypothesis is based on the predictions of field-tested simulation models [6,7],

the empirical discovery of divergent reef trajectories either side of modelled

(predicted) bifurcation thresholds [5], and mechanistic difficulties with the

alternative, single attractor hypothesis, advanced by Dudgeon et al. [8] (see

also [5]). A key prediction of this theory is that multiple attractors only

became feasible once disease decimated populations of two of the most impor-

tant species on Caribbean reefs: first, the dominant herbivorous urchin Diadema
antillarum, which died off in 1983/1984 [9], and second, the dominant reef-

building coral Acropora spp., which died off throughout the 1980s [10]. Neither

species has made a significant regional recovery although a few areas have seen

local increases in abundance [11]. As a result, the average coral cover in the

Caribbean has declined considerably since the late 1970s [1].

With relatively few corals capable of rapid growth, and a paucity of herbi-

vores, fleshy macroalgae, such as Lobophora variegata, have increased in

abundance on Caribbean reefs [12,13]. Because macroalgae compete with

corals for space, the combined relaxation of top-down controls on algal abun-

dance and the weakened community recovery of corals have created the

possibility of multiple attractors with hysteresis (figure 1). Moreover, grazing

levels have often been reduced further by the fisheries exploitation of the

remaining herbivores, which primarily include the reef fish families parrotfish

and surgeonfish [14–16]. Thus, the existence of multiple attractors is primarily
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Figure 1. Schematic phase portrait of Caribbean reef resilience exhibiting
hysteresis with stable (lines) and unstable equilibria (dashed lines). The
phase portrait delineates two basins of attraction (coral-dominated and
algal-dominated attractors) which determine the direction of change (black
arrows) of the reef community state (coral cover) in the absence of acute
stress and for a fixed grazing rate. Acute stress (e.g. bleaching) affects reef
state (black dot) by pushing down coral cover (red arrow). Chronic stress
(e.g. reduction in coral growth) may shift unstable equilibria (green arrow)
on the grazing scale towards higher herbivory levels. The two effects com-
bined are likely to push the system into the algal-dominated basin,
impairing the recovery potential of corals.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130267

2

 on November 24, 2014http://rstb.royalsocietypublishing.org/Downloaded from 
hypothesized to have a biological origin, triggered by disease

of two functionally important species, and has then been

reinforced by harvesting of the remaining herbivores.

The ability of coral reefs to exhibit alternative attractors

has been highlighted in several key papers on ecosystem resi-

lience [17–20]. To date, most studies of reef resilience have

focused on either ecological drivers such as the effects of fish-

ing on herbivory [6,7,21], chronic local physical drivers such

as nutrient enrichment [7,21,22] or the effect of periodic phys-

ical hurricane disturbance [23,24]. However, because corals

usually tolerate only a narrow range of sea temperatures,

the consequences of global warming have become one of

the greatest concerns for the future of coral reef health [25].

Indeed, anomalous warming events, such as the 1998 El

Niño-Southern Oscillation, have resulted in global outbreaks

of coral bleaching (i.e. the partial or complete mortality of

coral colonies due to a loss of symbiotic algae [26,27])

which caused a massive loss of living corals worldwide

[28]. This raises the question, how might elevated sea temp-

eratures generate regime shifts on Caribbean reefs, now that

multiple attractors have become feasible?

Most models of the response of coral reefs to global

warming have focused on reef state (usually expressed as

the percentage of living coral) or the frequency of bleaching

events that can maintain coral cover at low levels [24,29,30].

Reef state is important because it underpins a series of ecosys-

tem functions [31,32]. However, few studies have explicitly

studied the effect of climate change on coral reef resilience

per se. One exception is Anthony et al. [21], who found that

the combined effects of increased greenhouse gas (GHG)

emissions reduced the resilience of Pacific corals, thereby

increasing their susceptibility to local stressors.

Climate change impacts on coral reefs present an interest-

ing opportunity for studies of resilience. Firstly, reefs are

among the first ecosystems to experience severe impacts of cli-

mate change so the lessons learnt may prove insightful for
other ecosystems that are yet to experience severe impacts of

global warming. Secondly, a single climate-related driver can

exert multiple impacts on a reef system. A good example is

rising sea surface temperature (SST). Global SST has risen

0.748C over the twentieth century [33] and appears likely to

have had a chronic negative impact on the calcification and

growth of the massive coral Porites spp. on the Great Barrier

Reef, causing a 14% reduction in calcification since 1990 [34].

Rising SST is also responsible for coral bleaching: exceptionally

high summer SST, often only of þ18C, can cause mass mor-

tality at regional to global scales [35]. The frequency and

magnitude of acute bleaching events is expected to increase

as SST continues to rise [30]. Thus, rising SST has both a

chronic and an acute impact on reef ecosystems. The chronic

impact affects the rate of extension of the carbonate skeleton

of some corals, and therefore influences size-dependent mor-

tality rates, ecological interactions and population recovery

rate. Changes to these ecological parameters are expected to

influence the unstable equilibria of the ecosystem (figure 1),

potentially reducing the size of the coral basin of attraction

and increasing the likelihood that reefs will shift towards an

alternative attractor. The acute impact causes sudden mor-

tality which can push a system closer to, or even across,

the unstable equilibrium, which again reduces resilience

(figure 1). Each impact is likely to occur on a different time

scale and will vary among species. There is, therefore, the

potential for complex dynamics emerging from a single

driver (SST), and it is unclear whether the duality of its effects

will be additive, synergistic or possibly antagonistic.

Here, we study the complex effects of rising SST on the

resilience of Caribbean coral reefs. We simplify the ecosystem

to represent two contrasting life-history strategies of extant

corals and allow the dual effects of SST to affect each differ-

ently as they do in situ. We ask whether the chronic and acute

impacts of rising SST interact synergistically, additively or

antagonistically. We then compare the dual effects of this

driver on both ecosystem state and resilience. State is

included because of its functional importance and the ubi-

quity of its usage in studies of reef health and resilience

[36]. To calculate the effect on resilience, we adopt the prob-

abilistic framework developed by Mumby et al. [5,6,37] to

quantify the ability of coral reefs to remain within their

coral basin of attraction, essentially operationalizing Holling’s

[38] original concept of the ability of a system to remain

within one (of multiple) basins of attraction. Resilience is sen-

sitive to the initial state of the system, its environment and the

disturbance regime to which it is subjected. As a result, the

underlying unstable equilibria that separate alternative

basins of attraction are dynamic, changing in response to

the effects of climate change on coral growth.
2. Material and methods
(a) Model overview
A spatially explicit model of coral populations [6,22] was used to

simulate the dual effects of chronic and acute thermal stress, both

individually and in combination. The model is individual-based

and simulates the population dynamics of corals of a typical

mid-depth (5–15 m) Caribbean forereef system. The model is

designed as a regular square lattice of 400 cells, each approximat-

ing 1 m2 of a reef. Individual cells can be occupied by multiple

coral colonies of different species and patches of cropped algae

http://rstb.royalsocietypublishing.org/


years

m
ea

n 
an

nu
al

 S
ST

 (
°C

)

ex
te

ns
io

n 
ra

te
 (

cm
/s

ix
 m

on
th

s)

2010

27 0

0.1

0.2

0.3

0.4

0.5

28

29

30

2020 2030 2040

SST

2050

P. astreoides

O. annularis

2060

Figure 2. Mean annual SST (black line) as predicted by the HadGEM1 climate
model for the Caribbean basin and projected rates of lateral extension of
O. annularis (constant rate, blue line) and P. astreoides (variable rate, red
line) for the 2010 – 2060 period.
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(a mixture of coralline algae and short turf ) or macroalgae. Each

coral colony is defined by its cross-sectional basal area on the

square lattice. Colony area is updated every six-month time

step following systematic and probabilistic rules which reflect

processes of coral population dynamics (recruitment, colony

growth, predation and natural mortality), macroalgal popu-

lations (growth and grazing from herbivores) and competitive

interactions among corals and between corals and macroalgae.

In the present model application, coral populations are demo-

graphically open with a constant supply of larvae. Corals are

subjected to rising sea temperature, which has a deleterious

impact on coral calcification in addition to causing acute mor-

tality events due to bleaching. Model outputs include the cover

(%) of each coral and algal species over time, averaged over a

number (typically 100) of stochastic simulations.

For the past two to three decades, the branching coral Acropora
spp. has become scarce on Caribbean reefs, mostly because of dis-

ease [10]. Today, massive and encrusting corals dominate many

Caribbean ecosystems and two of the most abundant species are

the Orbicella (previously Montastraea [39]) annularis complex and

Porites astreoides. The O. annularis complex includes three sybile

species (O. annularis, O. franksi and O. faveolata) which tend to

form large, mound-like colonies. By contrast, P. astreoides exhibits

encrusting or small boulder-shaped colonies which provide little

architectural complexity to the reef framework. These two species

are representative of opposed life-history strategies generally

developed by coral organisms: while O. annularis is a broadcast

spawner, with a very low recruitment success and a moderate

rate of colony (lateral) extension, P. astreoides is a brooding coral

with high recruitment levels but a low extension rate (see details

in the electronic supplementary material). While O. annularis is a

historically dominant reef-framework builder on Caribbean

reefs, recent observations indicated a shift in dominance with sig-

nificant rises of P. astreoides populations [40]. Projecting the

responses of those two species in the future may thus inform on

the ability of Caribbean reefs to maintain a functional reef habitat

structure in the face of climate change. A full description of model

components adapted to this study is provided in the electronic

supplementary material.

(b) Thermal stress regime
Thermally induced disturbances were implemented according to

future SST as predicted by the UK Hadley Centre Global

Environmental Model HadGEM1 [41]. Global warming follows

the RCP8.5 GHG emission trajectory, a baseline scenario repre-

senting high GHG emissions ‘business as usual’ without any

specific mitigation target [42]. Similar to Edwards et al. [24], we

used the Caribbean basin mean SST calculated monthly from

2010 to 2060 (figure 2) to project global warming. Future SST

anomalies were used to calculate cumulative degree heating

months within a four month window [29], and then converted

to degree heating weeks (DHWs) to determine the probability

of coral bleaching. To retain a focus on the impact of acute

thermal stress, hurricanes were not included in the model.

(c) Coral response to chronic thermal stress: reduced
extension rate

Corals extend their skeleton through the precipitation of calcium

carbonate (CaCO3). The rate at which CaCO3 is deposited is

affected by many factors but temperature is particularly impor-

tant [43–46]. Experimental studies have shown that many coral

species have an optimal temperature at which calcification rate

is maximal [43,45]. Using radiographic analyses, Carricart-

Ganivet et al. [47] quantified recent calcification rates in

P. astreoides and two species of the O. annularis complex in the

Mexican Caribbean. For P. astreoides, they observed a negative
correlation between mean annual calcification rate and yearly

averaged SST (range 27.7–28.58C). This relationship was extrapo-

lated to estimate the rate of linear extension of P. astreoides as a

function of the predicted annual changes of SST. First, we deter-

mined changes in relative calcification with SST assuming

calcification rate of P. astreoides is maximum (100%) at 278C,

which corresponds to the first mean annual SST value (27.68C)

of our 2010–2060 time series. We assume that relative calcifica-

tion is 100% at the start of simulations. Changes in relative

calcification were then converted directly into changes in relative

extension (figure 2). This assumption, that a change in calcifica-

tion rate translates into a corresponding change in skeletal

extension, is supported by strong correlations between calcifica-

tion and linear extension reported for P. astreoides colonies

[47,48] and for massive Porites in the Indo-Pacific [49]. One expla-

nation is that P. astreoides invests calcification into skeletal

extension to maximize population growth and space colonization

[48]. As a result, P. astreoides linear extension changes in our

simulations on an annual basis as a proportion of their present-

day extension rate. Further details on calculations are provided

in the electronic supplementary material.

By contrast, linear extension of O. annularis was assumed to

be unaffected by global warming (i.e. extension rate is constant,

figure 2). Coral species of the O. annularis complex construct

denser skeletons possibly for increased resistance to bioerosion

[46]. As a result, variations in calcification and extension rates

appear to be weakly correlated in O. annularis colonies along a

gradient of SST [46]. In addition, Carricart-Garnivet et al. [47]

obtained a weaker correlation between mean annual calcification

rate and SST for O. annularis than for P. astreoides. Thus, we

hypothesize that a slight reduction in relative calcification

would mostly affect skeletal density, rather than skeletal exten-

sion, and therefore the impact of chronic thermal stress on

O. annularis has negligible influence on growth rate. We do not

attempt to include the additional impact of ocean acidification

on coral calcification as this would obscure results and its

combined effect with temperature on skeletal extension rate

remains uncertain.
(d) Coral response to acute thermal stress: bleaching
mortality

In the model, bleaching mortality is dependent upon the magni-

tude and duration of thermal stress [24]. For a given summer, a

DHW of more than 48C triggers a bleaching event that generates

http://rstb.royalsocietypublishing.org/
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whole- and partial-colony mortalities in corals. Details of the cal-

culation of bleaching probabilities are provided in the electronic

supplementary material. Briefly, whole-colony mortality is mod-

elled based on empirical observations collected throughout the

wider Caribbean during the 2005 bleaching event [50]. The prob-

ability of partial-colony mortality follows observations collected

during the 1995 bleaching event that occured in Belize [51], with

coral brooders and spawners having a 7% and 8% risk, respect-

ively. The extent of partial mortality is set at 30% of tissue

area, following McField et al. [51]. Corals that had previously

been exposed to elevated SST have a lower risk of mortality

during subsequent bleaching events [52]. Juvenile corals (cross-

sectional area less than 60 cm2) are not affected by bleaching [53].

In this study, the differential bleaching response of brooders

and spawners was further enhanced to better represent the

contrasting susceptibility exhibited by P. astreoides and the

O. annularis complex. Bleaching impact studies have shown

that the O. annularis complex has a greater bleaching prevalence

compared with P. astreoides [51,54]. In addition, bleached colonies

of the O. annularis complex appear to suffer greater subsequent

mortality due to diseases [54]. In the absence of a robust quanti-

fication of relative bleaching prevalence and subsequent

mortality for the two model species, we considered a simple

scenario where bleaching-induced mortality for the O. annularis
complex was twice that of P. astreoides.
(e) Assessing the effects of thermal stresses
A simulation-based experimental approach was developed to

assess the separate and combined effects of the two thermal stres-

ses on reef state and resilience. Four groups of simulations were

designed: (i) a control treatment without any stress (no climate

change); (ii) a regime consisting only of acute stress (bleaching

under the RCP8.5 climate scenario); (iii) a regime of chronic

stress but no acute bleaching (reduced growth of P. astreoides
under the RCP8.5 climate scenario); and (iv) a combined

regime of acute and chronic stress. For each treatment, 100 repli-

cate simulations were run for 50 years (from winter 2010 to

summer 2060). For all simulations, the model was initialized

with a 20% total coral cover (10% for each species), a 10%

cover of ungrazable substrate (e.g. sand), 20% macroalgal

cover, 50% of cropped algae and a high fish grazing rate that

maintained up to 36% of the reef in a grazed state, representative

of a reef with unfished parrotfish populations [55].

Reef state was quantified using total coral cover (%). Reef

resilience was calculated at every time step as the probability

that the reef lies above the unstable equilibrium (figure 1), mean-

ing that the reef is on a recovery trajectory. This requires building

the phase portrait of a reef in order to determine the locations of

unstable equilibria, i.e. the coupled values of coral cover and

grazing rate that separate the two alternative basins of attraction.

Note that positions of the unstable equilibria are influenced by

many processes even though only two are plotted in figure 1.

In our simulation experiments, algal productivity, ungrazable

substrate and grazing are kept constant, but the growth rate of

P. astreoides varies deterministically with changing SST and the

relative proportion of the two coral species evolves through the

simulation. To account for these changing conditions, we built

a phase portrait for 11 combinations of coral species’ relative

abundance and for each decade of climate change, during

which the growth rate of P. astreoides declined (i.e. using the aver-

age SST for each decade). For each phase portrait, unstable

equilibria were found by running 100 stochastic simulations for

every combination of grazing rate and initial total coral cover

over a period of 100 years. External perturbations were switched

off during this process, because the aim is to determine which

attractor is operating or whether the reef is at equilibrium. Pos-

itions on the phase portrait that clearly fall below the unstable
equilibrium (i.e. within the algal-dominated basin) would

never experience an increase in coral cover. By contrast, simu-

lations from positions that lie above the unstable equilibrium

(i.e. within the coral-dominated basin) would always exhibit an

increase in coral cover. Theoretically, the state of a reef would

remain unchanged for all 100 years if it lays precisely at the

unstable equilibrium. However, the existence of stochastic eco-

logical processes means that the unstable equilibrium is in fact

probabilistic. We captured this variability in our calculation of

the phase portrait by determining the percentage of 100 simu-

lations that exhibited coral recovery for each initial starting

position. A reef near the unstable equilibrium will follow the

coral attractor 50% of the time and the algal attractor 50% of

the time.

For each simulation of the four treatments, we extracted the

probability of recovery from the relevant phase portrait, based on

coral species composition and decade. At every time step, ecologi-

cal resilience was calculated as the mean recovery probability over

the 100 simulations. Note that these simulations differ to those used

to create the phase portrait; here, the simulations can include acute

disturbances (i.e. for the two scenarios that include bleaching).

Resilience for a given year can be thought of as the probability

that a reef remains within the coral-dominated attractor and is

therefore able to exhibit recovery.

Our approach allowed us to measure the effect of each treat-

ment by comparison with the control group. Effect sizes E(t) for a

given treatment relative to the control were calculated at every

time step as follows:

E(t)
treatment ¼

X(t)
control � X(t)

treatment

X(t)
control

,

where X(t) is the variable of interest (i.e. total coral cover or resi-

lience) at time step t in the simulated control or treatment group.

Effect sizes thus quantify the variation of X(t) in the treatment

relative to the control. A positive effect indicates a lower X(t)

value in treatment compared with the control. Mean treatment

effects and standard deviations were calculated from the 10 000

possible pairwise values of X(t) between each replicated (n ¼
100) control and treatment simulations. As a result, treatment

effects can be tracked over time by their mean value and 95%

confidence limits.

To investigate whether the two stressors have additive,

antagonistic or synergistic effects on total coral cover and resili-

ence, we calculated a predictive additive effect following a

multiplicative model defined as [56,57]:

Ê(t)
combined ¼ E(t)

acute þ E(t)
chronic � E(t)

acute � E(t)
chronic:

A multiplicative expectation (e.g. a multiplicative loss)

assumes that one stress can be enhanced by the other [58] so

that the two effects are not independent [56–58]. If the combined

treatment effect is found to be significantly higher than the (addi-

tive) expectation, then the interaction is synergistic. If the

observed effect is less than the expectation, then the stressors

are acting antagonistically [58]. If the response matches the pre-

dicted, then the two effects are simply additive (as calculated

using a multiplicative model).
3. Results
(a) Chronic and acute effects of thermal stresses

on reef state
Under a baseline scenario where corals are not affected by

any thermally induced perturbations, coral cover invariably

increases over time (figure 3a–c). The addition of acute dis-

turbances, i.e. bleaching events as predicted under the

http://rstb.royalsocietypublishing.org/
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RCP8.5 scenario, considerably reduces the total cover of

corals to ca 20% of the baseline by 2060 (figure 3a), with an

effect becoming significant (i.e. the 95% confidence interval

does not overlap with 0) by 2025 (figure 3d ). A chronic

reduction of P. astreoides growth rate has a smaller effect on

reef state than bleaching (figure 3b,d) but becomes significant

by 2035. The predicted combined effects of the two stressors

closely matched the simulated combined-stressor effect

(figure 3e), indicating that the two stressors act additively

on reef state, without synergism or antagonism.
(b) Chronic effects of thermal stress on coral/grazing
unstable equilibria

Under a scenario of elevated SST, which reduces the extension

rate of P. astreoides, the position of unstable equilibria in the

coral/grazing phase portrait (figure 4) is progressively shifted

to the right, thus reducing the size of the coral basin of attrac-

tion. This indicates that higher herbivory is required to

maintain future Caribbean reefs in the coral-dominated

basin. Species composition of the initial coral assemblage

(i.e. the relative cover of P. astreoides at initial step) also

affected the location of the critical thresholds by steepening

the hysteresis curve with increasing dominance of the brood-

ing species, P. astreoides. This implies that a given loss of coral

in P. astreoides can have a greater impact on system resilience

than a loss of O. annularis.
(c) Chronic and acute effects of thermal stresses
on reef resilience

In the absence of thermal stress, reefs are fully resilient (i.e.

probability of recovery is 1) for the designated initial coral

cover (20%) and grazing level of 0.36 (figure 5a–c). Acute

bleaching progressively erodes reef resilience to the extent

that reefs have a 50% chance of losing their facility to show

any recovery by 2060 (figure 5a). The chronic effects of global
warming lower resilience to a lesser extent (figure 5b,d ) such

that resilience remains at 70% by the end of the simulations

(figure 5b). Resilience decreases dramatically in 2030, which

corresponds to a significant increase in SST during the

decade 2030–2040. When combined, acute and chronic stres-

ses have a much greater effect than expected (figure 5e),

indicating synergism in the reduction of resilience. The recov-

ery potential exhibits a dramatic drop off in 2030 and becomes

nearly null by 2040. All reefs switched to the algal basin of

attraction at the end of the time frame.
4. Discussion
We used a spatially explicit model to simulate the complex

response of Caribbean coral reefs to global warming under a

‘business as usual’ scenario for GHG emissions. Coral commu-

nity structure was reduced to O. annularis and P. astreoides,
two species relatively abundant on Caribbean reefs in the

absence of Acropora spp. This simplification allowed us to

retain a focus on the impact of thermal stress on two representa-

tive life-history coral strategies. Warming influences reefs

through multiple pathways and the nature of their interaction

changes depending on the ecosystem metric considered. The

chronic and acute impacts of warming were simply additive

on reef state while their interactions generated a multiplicative

synergism (sensu [58]).

In our simulations, global warming increased the fre-

quency and intensity of acute coral bleaching events, which

led to a rapid deterioration of reef state because of repeated

coral losses. Reef state is highly sensitive to bleaching because

bleaching causes partial and whole-colony mortality in

medium-sized to larger corals which have the most important

contribution to coral cover (figure 6). Chronic impacts of

global warming, acting through the reduction of P. astreoides
growth rate, have indirect and delayed effects on coral cover.

Coral cover will decline if the processes that increase cover—

recruitment of new corals and the somatic growth of all
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corals—are outweighed by the processes that remove cover.

In the absence of acute mortality, the only processes that

remove cover are natural whole- and partial-colony mortal-

ities. The first impact of chronic stress is to reduce

recruitment by increasing the mortality of young corals

(figure 6). A slower individual growth rate prolongs the

exposure of coral recruits and juveniles to competition from

macroalgae, which can smother such small corals relatively

easily [59,60]. Increased mortality of these diminutive corals

has barely any direct, short-term effect on coral cover because

their combined areal coverage is virtually negligible. How-

ever, when the reduction of recruitment is combined with

slower somatic growth across all P. astreoides, the rate of

replenishment of coral cover can become impaired. This

effect is delayed for two reasons. First, population recovery

exceeds loss in early parts of the time series because

growth rates are still high and recruitment is not limiting

the adult population. Second, as chronic stress only influ-

ences P. astreoides, the magnitude of the impact should

become increasingly notable if Porites dominates the
community. In the early years, O. annularis are still relatively

abundant but they are progressively outcompeted by Porites,

whose recruitment rate is an order of magnitude higher

[55,61]. Thus, the gradual shift in species composition further

delays the point when chronic stress has a significant impact

on coral cover.

Interestingly, chronic and acute stresses have an additive

effect on reef state, as evidenced by the perfect fit of the mul-

tiplicative model. Stressors combine additively because

chronic stress acts to reduce the rate of coral recovery between

successive bleaching events. The interaction between stres-

sors is indirect, because one has a direct effect on mortality

(acute stress) and the other has a direct effect on growth

rate (chronic stress). While reef state projections are drawn

for an average Caribbean reef system, similar impacts of

increasing SST on coral colony growth may be expected in

other regions [25,34]. In addition, future SST projections

suggest that temperature anomalies will occur worldwide

so that bleaching will continue to be a widespread phenom-

enon [30,62]. This strongly suggests that thermal stress,
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induced by climate change, will become an important driver

of coral reef state in the next 50 years. More detailed projec-

tions of Caribbean reefs, which include other stressors, can

be found elsewhere (e.g. [24,32]).

Unlike reef state, the interaction between chronic and

acute stress is synergistic on resilience. Both stressors work

in concert to push reef state closer to, and eventually over,

the unstable equilibrium. Chronic stress moves the bifur-

cation threshold to the right (figure 4), which effectively

raises the threshold level of coral cover for the unfished graz-

ing rate of 0.36 and increases the likelihood that bleaching-

induced losses of coral will push the system across the

threshold. Shifts in unstable equilibria that affect the size of

a basin of attraction have been already described in other sys-

tems with multiple attractors [63,64]. Because coral reefs are

subject to multiple stressors, there are many potential path-

ways by which external disturbances can gradually shift a

critical threshold towards increased susceptibility to acute

stress (e.g. [7]). For instance, our simulations did not consider

sublethal effects of bleaching events, such as the prolonged
reduction of somatic growth and reproductive capacity of

bleached colonies [27], or the effects of other stressors, such

as hurricanes, fishing, nutrients and ocean acidification. Con-

sidering synergism among stressors is therefore of paramount

importance to envision the future impacts of climate change

on coral reef resilience. While there is no evidence that coral

reefs other than those in the Caribbean exhibit alternative

attractors, there is no guarantee that reefs of the Indo-Pacific

will not eventually succumb to multiple attractors, particu-

larly if climate change and/or ocean acidification continue

to reduce coral calcification and growth [21].

A key difference between reef state and resilience is the

time scale over which they change. Once reef state lies near

the unstable equilibrium, a small change in state can have a cat-

astrophic and immediate impact on resilience. Resilience

measures whether there is sufficient recruitment and growth

to allow net coral recovery from the current reef state. Imagine,

for example, that state moves to a point where the balance

between processes of recovery versus natural mortality just

becomes negative. In the short term, this will have a barely

detectable effect on state because the rate of coral decline

might be very low. But the effect on resilience is immediate,

because the derivation of the phase portrait is based on 100-

year simulations and these would easily detect that the coral

population has become unsustainable. Thus, resilience can

change considerably faster—and earlier—than a change in

reef state [65].

Our analysis focused only on a single stressor on coral

reefs, albeit one with dramatic impacts, which include the

1998 global bleaching event. While we do not attempt to pro-

vide a comprehensive analysis of all stressors acting on

corals, we learn that reef state and resilience respond differ-

ently and are largely decoupled. This has important

implications for management interventions. Currently, reef

state plays an important role in the monitoring of reefs and

is commonly included as ‘indicator’ of resilience [36]. There

is nothing wrong in this because reef state does contribute

to resilience by determining the proximity of the unstable

equilibrium and species composition does influence the

phase portrait. However, if management interventions are
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based solely on state, then a loss of resilience could go unno-

ticed [66]. This is because resilience can respond rapidly to

an incremental change in state. Worse, the hypothesized

existence of hysteresis means that it may become dispropor-

tionately more difficult to restore resilience as state continues

to decline [67]. Resilience has been operationalized for Carib-

bean coral reefs by combining an extended version of the

simulation model used here with a wider range of spatially

realistic disturbances and an assessment of how manage-

ment measures, such as marine reserves, can influence the

resilience under a ‘business as usual’ scenario [37]. However,

further modelling efforts are required to account for various

growth strategies and thermal susceptibilities in the
assessment of coral reef resilience and to integrate connec-

tivity among coral populations. Operationalizing resilience

has its challenges [37,67] but is particularly important in

the context of climate change because it can help identify,

and ideally repair, ecosystem dysfunction before stress

levels have risen to the point that degradation becomes

potentially irreversible [19,68].
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